Minoufiya University	Subject: Industrial Ventilation
Faculty of Engineering	Code: MPE 502
Mechanical Power Eng. Dept	Academic Ievel: Diploma.
Academic Year: 2015-2016	Time allowed: 3 hours
Date: 11-6-2016	Total degree: 100 marks

Answer all the following questions:

Question-1
 [40marks]
 a-Mention the different sources of pollutants inside the closed spaces.
 (6 marks)
 b- Explain with details the meaning of IAQ.
 (6marks)

c- Classify the contaminants inside the closed space and mention one example of each type.
(6 marks)
d- Describe using diagrammatic sketch the operation of natural ventilation system and report its advantages and disadvantages.
e- Show the difference between the two methods of industrial ventilation system (i.e. dilution and local exhaust), and mention only the disadvantages of each method.
(8 marks)
f- What are the general rules for duct design to obtain the optimum performance?
(6 marks)

Question-2

[60 marks]

- A garage has the dimensions as shown in the next figure. The inlet and exit ventilation openings have the same shape and the same dimensions ($25 \mathrm{~cm} \times 75 \mathrm{~cm}$). The difference between the levels of inlet and exit opening (i.e. ΔH) is $\mathbf{1 . 0} \mathbf{~ m}$ and the discharge coefficient C_{D} is $\mathbf{0 . 6 1}$ for all the openings. The dynamic pressure head at the inlet opening is neglected. The average temperature inside the garage is $35^{\circ} \mathrm{C}$ while the outside temperature is $25^{\circ} \mathrm{C}$. The air flow rate from duct openings are $\mathrm{Q}_{\mathrm{B}}=\mathbf{4 0} \%$ of the fan flow rate and $\mathrm{Q}_{\mathrm{D}}=\mathrm{Q}_{\mathrm{E}}=30 \%$ of the fan flow rate. Take the pressure loss coefficients at bend is 0.8 and the exit is 1.0 along the duct. Also, take the velocity for the main duct is $8 \mathrm{~m} / \mathrm{s}$ and the fan efficiency is 0.82 . Assume any required data and calculate the following:
i- The required air flow rate if the air change rate (ACR) equals 6.
ii- The natural flow rate based on the buoyancy effect only.
iii- Design the ventilation duct using the equal friction coefficient method.
iv- The pressure losses at the exit damper.
v - The fan horse Power (HP).

Use the following relations if you need:

$$
\begin{aligned}
& \frac{\Delta P_{f}}{L}=\frac{0.022243 \dot{Q}_{a i r}^{1.85}}{D^{4.973}}, \quad D_{e q, B}=D_{e q, A}\left(\frac{Q_{B}}{Q_{A}}\right)^{\left(\frac{1.85}{4.973}\right)}, \quad D_{e q}=1.3 \frac{(a b)^{0.625}}{(a+b)^{0.25}} \\
& \dot{V}=A_{\varepsilon} C_{e} \sqrt{\frac{2 g \Delta H \Delta T}{\bar{T}}}, \quad \frac{1}{\left(A_{\varepsilon} C_{e}\right)^{2}}=\frac{1}{\left(\sum A_{i} C_{i}\right)^{2}}+\frac{1}{\left(\sum A_{o} C_{o}\right)^{2}}
\end{aligned}
$$

With best wishes
Dr. Otshraf \neq min

